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Hydrodynamics of small tubular pumps 

By J. F. DIJKSMAN 
Philips’ Research Laboratories, P.O. Box 80.000, 5600 JA Eindhoven, The Netherlands 

(Received 30 June 1982 and in revised form 12 September 1983) 

Miniature tubular pumps are used to emit droplets from ink-jet matrix heads. This 
paper deals with the simulation of the behaviour of a viscous and compressible liquid 
in such pumps. The response of the liquid in the frequency and time domain is 
analysed. 

An approximate method is given to determine the droplet speed and size. 

1. Introduction 
Miniature tubular pumps are used as the droplet-emitting parts in devices, such 

as ink-jet matrix heads, that  work according to the droplet-on-demand principle. 
Each pump of such a head consists of a glass tube which is partly surrounded by 

a thick-walled tube made of radially polarized piezoelectric ceramic material 
(Berlincourt, Curran & Jaffe 1964; Philips 1974). One end of the glass tube is 
connected to the reservoir, for instance by a tube with a relatively small cross-section, 
the purposes of which are damping and avoiding cross-talk. The other end is 
a nozzle. Characteristic data of such a pump are: 

overall length 30-50 mm ; 
inside diameter 0.4-1 mm; 
nozzle diameter about 0.1 mm; 
wall thickness of glass tube about 0.05 mm. 
The action of a pump working according to the droplet-on-demand principle is 

broadly as follows. Owing to  a sudden volume change caused by a pulsewise voltage 
change across the piezoceramic tube, pressure waves are built up, which start 
travelling through the glass tube. At the moment that a positive pressure wave hits 
the nozzle, the fluid there will be pushed outwards. When the amount of kinetic energy 
transferred outwards is larger than the surface energy needed to form a droplet, a 
droplet can in principle be launched. Whether in reality a droplet is released and what 
its velocity is will depend on the amount of kinetic energy transferred outwards in 
excess of the surface energy needed to form a droplet. I n  order to  overcome the 
decelerating action of the ambient air, the droplet must have an initial velocity of 
several metres per second. The pulse height is chosen in such a way that just one 
droplet is formed. By damping, the next positive-pressure waves that arrive a t  the 
nozzle must be made so small that no droplet is launched until the piezoceramic 
actuator is charged again. 

I n  $2 an approximate theory is presented, which makes it possible to  predict the 
response of miniature tubular pumps in both the frequency domain and the time 
domain, including the effects of the geometry of the pump, the shape of the charge 
pulse and the physical properties of the ink, such as its viscosity, compressibility and 
density. 
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FIGURE 1. Schematic set-up of a miniature tubular pump. 
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FIGURE 2. Example of a miniature tubular pump (all dimensions in mm). In the drawing the 
cross-sectional dimensions are enlarged by a factor of 5 with respect to the length. Glass tube: wall 
thickness 0.04 mm, Young’s modulus 6.4 x 1O’O Pa. Actuator: material PZT-5 (Berlincourt et al. 
1964), radial displacement inside 0.26 x mm/100 V,  lowest longitudinal resonance frequency 
200 kHz. Fluid: ethylene glycol: y = 0.02 Pas ,  c = 0.05 N/m, p = 1113 kg/m3, c = 1680 m/s 
(Weast 1974). 

Section 3 deals with a method that can be used to  predict the droplet size and the 
droplet speed. The droplet formation is highly dependent on the surface tension of 
the ink. 

2. Analysis of pump action 
Consider the geometry shown in figure 1. The frame of reference is a cylindrical 

coordinate system ( r ’ ,  Of ,  2’). The z’ axis lies along the centreline of the pump, which 
may be slightly curved (e.g. for integration in a multinozzle print head). I ts  positive 
direction equals the direction of the net flow through the pump. The lines r’ = constant 
and 8‘ = constant are in the circumferential and radial directions respectively. The 
motion of the ink, which has constant properties, is axisymmetric with respect to the 
2’-axis. During action the temperature remains constant. 

The analysis proceeds as follows. The pump is divided into several parts in such 
a way that each part is a circular cylindrical tube with constant properties and 
cross-sectional dimensions. Apart from a set of constants, the behaviour of the fluid 
contained in such a part can be calculated. The sets of constants can be found by 
using the conditions a t  the end and the beginning of the pump and by evaluating 
the compatibility conditions between the parts. A typical example of a tubular pump 
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FIGURE 3. Division into elements (all dimensions in mm). The damper 
consists of two nozzle-shaped parts. 

is shown in figure 2. Figure 3 gives an overview of the division of this pump into the 
parts described earlier. 

We start with the analysis of the pump in the frequency domain. After that we 
can calculate by Fourier analysis the response of the system in the time domain. 

First, we make some preliminary remarks. An estimate of the pressures induced 
in the pump by applying a voltage of 100V across the actuator, which is a 
representative value, can be arrived at by the following reasoning (see data of figure 
2). It is assumed that the radial displacement of the inside of the piezoceramic tube 
and the radial displacement of the inside of the glass tube which it surrounds are equal. 
Consider the case that the inside of the glass tube is moved stepwise inward over a 
distance equal to 0.26 x lo-* mm. This step is generated so fast that  the displacement 
of the fluid in the axial direction is negligible. This is true because the velocity is 
limited by the velocity of sound and the tube is long relative to  its diameter. Then 
the pressure rise inside the pump section can be calculated as 

Ap = - K A V / V ,  ( 1 )  

(2) 

where K is the compression modulus of the fluid, which is related to  the velocity of 
sound by 

Inserting R = 0.2 mm and K = 3 x 10’ Pa (ethylene glycol) we find Ap x 7 x lo5 Pa. 
This value may be expected to be representative of the maximum value of the 
pressure waves travelling through the system. 

The displacement w for a glass tube with inner radius R = 0.2 mm, wall thickness 
h = 0.04 mm and Young’s modulus E = 6.4 x 10’O Pa loaded by an inside pressure 
of 7 bar is roughly equal to low5 mm. Thus the movements of the walls of the supply 
and waste tubes, as well as of the pump section, are extremely small compared with 
their radii. The velocity of the wall is equal to the amplitude just calculated multiplied 

c = (K/p)l .  
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by w = 27cf,, where f, is a characteristic frequency related to  the action of the pump. 
Usually the ratio of the maximum wall velocity and the maximum velocity in the 
axial direction, which is related to the droplet velocity, remains very small, even for 
frequencies of the order of 1 MHz. 

Using the relation (Landau & Lifshitz 1959) 

and the estimate of the magnitude of the pressure waves, i t  appears that the 
variations of the density are of the order of 1 kg/m3. Thus the variations of the 
density are extremely small compared with the value at rest (see data of figure 2). 
Moreover the length of the system is large compared with its cross-sectional 
dimensions. This is also true for most of the separate parts. 

Guided by these remarks, we may expect that  the fluid motion is mainly directed 
in the z-direction, and the gradients of the pressure and the density in the r-direction 
are negligible relative to the corresponding gradients in the z-direction. The lengths 
of the parts of the nozzle and the damper, however, are quite small. As long as the 
wavelengths of the pressure waves travelling through the system are long compared 
with the cross-sectional dimensions, the theory developed in the following also applies 
for these parts. When this is the case the influence of the compressibility of the fluid 
is small and the results of the calculation are similar to  those for an incompressible 
viscous fluid. As usual, when dealing with incompressible viscous fluids, complex 
geometries such as the nozzle and the damper can be considered as a series of 
cylindrical tubes with different cross-sectional dimensions. 

As the capillary pressures are very small compared with the magnitude of the 
pressure waves induced by charging the actuator, i t  will be assumed that a t  both ends 
of the pump the pressure inside the fluid is equal to the ambient pressure. 

The following derivation applies to an element with radius R, length L,  wall 
thickness h and Young's modulus E .  In  i t  moves a liquid with density p,  velocity of 
sound c and viscosity p.  The velocity, density and pressure fields are defined with 
respect to a local cylindrical coordinate system ( r ,  8 ,  z ) ,  the origin of which is at the 
entrance to the element. 

Integration of the linearized equation of continuity (Landau & Lifshitz 1959), 

over the cross-section gives, after division by zR2, 

where vz = a 1 joR 27crvz dr. 

The velocity v, a t  the wall is given by 

The functionf(t) denotes the motion prescribed by the actuator (f(t) is related to the 
applied voltage as mentioned : see the data of figure 2) .  
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Inertia effects of the tube wall can be left out of account as long as the frequency 
of variations of f( t )  is small compared with the lowest eigenfrequency of the tube (see 
also ( 2 6 )  and ( 2 7 ) ) .  

It is assumed that bending effects are negligible. This is allowed if the wavelengths 
of pressure waves are long compared with the cross-sectional dimensions of the 
element (Timoshenko & Woinowsky-Krieger 1959). Combination of the integrated 
equation of continuity (5) with the relations (3) and ( 7 )  results in 

where 
1 1 po(R+yL)2 
- = - + 2 -  
c2 c2 R Eh ’ 

(9) 

The flow inside the tubular pump is characterized by a small value of the Strouhal 
number (Landau & Lifshitz 1959). The Strouhal number relates the convective 
momentum flux, associated with the bulk flow of fluid to the acceleration stresses. 
Consequently the convective terms in the equation of motion can be left out of 
account. Integration of the linearized equation of motion, 

over the cross-section, and division by nR2, yields 

Elimination of V, gives a set of two equations which describe approximately the 
non-stationary behaviour of a viscous and compressible liquid in a narrow long tube : 

This set of equations is put in dimensionless form by introducing the folowing set 
of dimensionless quantities : 

, * = P  .,* =2 2, , 7 =  wt ,  

Po v 

Substitution of (13) in ( 1 2 )  gives 
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We start with the solution of (14b) for vz, such that the no-slip condition along 
r* = R* and the symmetry condition along r* = 0 are fulfilled. From the expression 
for v: we calculate the derivative of vz with respect to r* a t  r* = R* and substitute 
the result in (14a). In  order to  solve (14a) for the dimensionless pressure we must 
specify the function f. Equation (14) will be solved by the separation of variables. 
Suppose that 

The solution of (14b) that satisfies the boundary conditions mentioned is 

p* = Re (fiei7), v: = Re ($eiT), f*(7) = Re (ei7). (15) 

aft ber r* bei R* - bei r* ber R* v,* = -Re yei7- [ az* { ber2 R* + bei2 R* 

-I)}], (16) 
+ (bei r* bei R * + ber r* ber R* 

be? R* + bei2 R* 

where ber r* and bei r* are Kelvin functions of zeroth order (Abramowitz & Stegun 
1972). 

The derivative of the dimensionless velocity at r* = R* is 

where 
1 ber R* bei’ R* - bei R* ber’ R* 

ber2 R* + bei2 R* a1 =R* 

1 ber R* ber‘ R* + bei R* bei‘ R* 
a2 = - R* ber2 R* -k bei2 R* 

ber’R* and bei‘R* are the first derivatives of ber r* and bei r* with respect to the 
argument a t  r* = R* (Abramowitz % Stegun 1972). (Note that,  apart from the 
division by R*, a, and a2 are quotients of cross-products of the Kelvin functions 
(Abramowitz & Stegun 1972).) Substitution of (15) and (18) in (14a) yields 

(19) 
a 2 f i  

az*2 
a2.ft+-(1 +2a,+2ia2) = -2p.  

The solution for p* is 

p* = Re [ei7 { (A ePaiZ* + B eaiZ*) cos a2 z* + i(A e-alZ*- BeaiZ*) sina, z* -2 - 

(20) 
where 

and 

a 
a1 = ~ sin 40, 

(mod)$ 

a 
a2 = ~ cOsie, 

1+2a,. 
cose = ___ 2% sin8 = -- 

mod ’ mod ’ 
mod = {( 1 + 2aJ2 + 44}k (22) 

After solving for p*, the velocity vz follows from (16). 
Evaluation of (6) gives an expression of the mean velocity u: : 

1)) 1 , (23) 
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FIGURE 4. Series of trapezoidally shaped pulses, with pulse length t,: 
rise-and-fall time t ,  and repeat rate fr. 

where a, and a, are defined by (18). At present the solution contains two unknown 
complex constants A and B.  These are found as follows. Let the tubular pump be 
divided into N parts. The total number of unknown complex constants is then 2N.  
At the boundary of two elements we must ensure the continuity of pressure and mass 
flux; this provides 2 ( N -  1) equations for the unknown constants. The remaining two 
are the constraints on the pressure a t  the ends of the pump, where it is assumed that 
the pressure inside the fluid is equal to the ambient pressure. 

As the equations governing the fluid flow are linear, the response in the time domain 
can be found by Fourier analysis. We consider the case that the actuator is charged 
pulsewise a t  a constant rate off,. pulses per second. The pulse shape is trapezoidal. 
The effect of such a pulse on the inside displacement of the corresponding part of 
the glass tube is depicted in figure 4. 

The Fourier decomposition of such a series of pulses is 

I W 

f ( t )  = wok&,+Re I: (En-iCn)ein7 3 

n-i 

where r = w, t ,  w,. = 27rf,., and the coefficients to, ..., tn, ..., 6, ... are 

With use of the theory for f(7) = Re (En ein7) (n = 1, ..., 00)  the final result is found 
by adding up the outcomes for each n. 

For the geometry given in figure 2 the response in the frequency domain is 
calculated. The division into parts is displayed in figure 3. Figure 5 shows the response 
of the fluid in the frequency domain in terms of the amplitude of the mean velocity 
at the end of the nozzle for the case that the amplitude of the actuator remains 
constant. Also displayed is the response of a system with a constriction at the 
beginning of the pump. The effect of a different viscosity on the fluid response is shown 
in figure 6. 
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FIQURE 5 .  Responses of the fluid column in the frequency domain in terms of the amplitude of the 
mean velocity a t  the end of the nozzle for the system given in figure 2 with and without damper. 
The amplitude of the actuator is equal to 1.2 x lo-* m. 

. Amplitude 3 (m/s) at nozzle 

- - With damper 

--- Without damper 

FIGURE 6. Responses of the same systems as used in figure 5 ,  but with ,u = 0.001 Pa s. 
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When looking at  the physical response of a system, we also observe some 
resonances coming from the structure of the pump. The most important one is the 
fundamental resonance of the piezoceramic actuator in the longitudinal direction : 

fpie,, = - 1 (%)J 
2L Ppiezo 

(According to Berlincourt et al. (1964), for PZT-5 it is found that C g  = 1.26 x loll Pa 
and ppiezo = 7750 kg/m3. For the actuator considered fpiezo is roughly equal to 
200 kHz.) Moreover, the longitudinal eigenmotions of the glass structure must be 
taken into account. For the case that the ends of the supply and waste tubes are not 
clamped stiffly in the writing head, an estimate of the fundamental resonances of these 
parts can be obtained by evaluation of 

(Thompson 1966). As the mass of the piezoceramic actuator is large relative to that 
of the glass tube, i t  is assumed for the derivation of (27) that the glass tube is clamped 
in the actuator. (Inserting E = 6.4 x 1O1O Pa and pglass = 2400 kg/m3, it is found that 
the fundamental resonances for the supply and waste tubes are 210 and 150 kHz 
respectively. When the system is filled with liquid these values are somewhat lower.) 

Some results of the calculations in the time domain are given in figures 7 and 8. 
In  order to obtain sufficient accuracy, the first 250 terms of the Fourier series (24) 
are used for all the calculations. Figure 7 shows the responses of the pump in the time 
domain expressed in terms of the mean velocity and the velocity for r = 0, both 
defined at the end of the nozzle, for pulses of different length. For the calculation 
the pump of figure 2 without damper is used. The displacement of the inside of the 
actuator is directed outwards during the pulse. 

For the case t ,  = 18 ps the velocity in the nozzle when it is positive for the first 
time is considerably higher than for the two other cases. This behaviour can be 
explained as follows. 

A trapezoidal pulse consists of two equally shaped step functions with rise time 
t, and opposite sign, which are supplied to the system with a delay time equal to t, - t,. 
During the first step the pressure is initially decreased in the pump section. At the 
ends of the pump section, pressure discontinuities are generated. Starting a t  these 
positions, two pressure-decreasing waves travel directly towards the nozzle and 
the reservoir, while two pressure-increasing ones travel through the pump section 
towards the nozzle and the reservoir. The pressure-decreasing wave from the end of 
the pump section reaches the nozzle first. The fluid in the nozzle sucks in. The 
pressure-increasing wave from the beginning of the pump section reaches the nozzle 
after travelling through the pump section and the waste tube and then starts 
eliminating the effect of the pressure-decreasing wave. 

The pressure-decreasing wave in the supply tube is reflected a t  the open end as 
a pressure-increasing wave. When the second step is generated a t  the right moment, 
the reflected pressure-increasing wave and the pressure-increasing wave induced by 
the second step are added up in an optimal way. 

Using this reasoning, an estimate of the optimal delay time can be obtained 
by calculating the time a pressure wave needs to travel twice through the supply 
tube and once through the pump section. From the definition of the pulse time (see 
figure 4) one must add to this result the rise time t,. I n  the case discussed, using the 
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f p  = 12 ps 

- 

t ,  = 24 ps r ,  

FIGURE 7. The responses in the time domain of the system given in figure 2 without damper in 
terms of the mean velocity and the velocity a t  r = 0, both defined a t  the end of the nozzle for three 
different pulse lengths. -, mean velocity; ----,  velocity at r = 0 (displayed during the first 
100 ps). For each of the cases the rise time t, = 2 ps, the repeat ratef, = 1000 Hz and the pulse 
height w,, = 1.2 x lo-* m. 
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FIGURE 8. (a) The response of the system in figure 2 with damper. The pulse time is 18 ps, the rise 
time 2 ps, the repeat rate 1000 Hz and the pulse height 1.2 x lo-* m. (b) The response of the system 
in figure 2 without damper, filled with a liquid whose viscosity ,u is 0.001 Pa s (tp = 18 ps, t, = 2 ps, 
j,. = 1000 Hz and wo = 1.2 x lo-* m). 

appropriate values of the velocity of sound in the axial direction (9), it is found that 
t, = 18 ps. For the optimal addition of the pressure-increasing waves it is essential 
that the beginning of the pump is open. The effect of a damper when the pump is 
operated with the same pulse is shown in figure 8 (a) .  There is no amplification, since 
the pressure-decreasing wave starting from the beginning of the pump section 
towards the reservoir is reflected at  the damper as a pressure-decreasing wave again. 
In figure 8 (a) the effect of a much lower viscosity is elucidated for the system of figure 
2 without damper. It is remarkable that in the low-viscosity case the difference 
between the mean velocity and the velocity a t  r = 0 has nearly disappeared. 

The extent of coupling of (14a)  with (14b)  depends on the magnitude of R*. With 
constant dimensions and density of the fluid, this coupling decreases with decreasing 
viscosity. The influence of the viscosity in a pulsating flow depends on the ratio of 
the Strouhal number S and the Reynolds number R :  
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A reasonable guess for t, is t, = L/c,  where L is the overall length of the system. 
Inserting the data of, for example, the structure given in figure 2, i t  appears that in 
this case the number defined by (28) is small, except in the nozzle, where it reaches 
a value of order unity. I n  the case considered in figure 8 ( b )  this number is small to 
extremely small everywhere, and the fluid behaves nearly as an inviscid liquid. 

3. Droplet formation 
Droplet formation is a phenomenon that depends on the viscosity and surface 

tension of the liquid and on the velocity distribution in the nozzle as a function of 
time and space. The actual droplet formation is very complicated indeed. (For a series 
of photographs showing successive stages of droplet formation see figure 9 (Doring 
1982) .) We will present here a strongly simplified method, which, however, predicts 
the droplet radius and its velocity quite well, without going into details about 
precisely what happens at the end of the nozzle. 

The description is based on the following assumptions. 
(1) Basically the droplet formation depends on the ratio of the kinetic energy 

transported outwards to the energy needed to form the surface of the droplet. If this 
number is larger than unity, then in principle a droplet can be formed. Among other 
things the velocity of the droplet depends on the amount by which this ratio exceeds 
unity. The viscosity does not play any direct role in the exchange of energies. 
Indirectly there will be an effect since the velocity distribution in the nozzle depends 
on the viscosity. 

(2) The influence of the ambient air will be neglected. This statement can be checked 
as follows. The drag force exerted by the air on a droplet with radius Rd is expressed 
by the formula (Bird, Stewart & Lightfoot 1960) 

F = 7~Ri  x i p v i  f, (29) 

where the friction factor f depends on the Reynolds number R appropriate to  this 
case 

2Pair vd Rd R =  
Pair 

and by the modified Stokes law 

f = 1.85R-% (2 < R < 500). (31) 

Then the deceleration of the droplet due to air friction equals 

(After inserting pair = 1.2 kg/m3, Vd = 3 m/s, Rd = 0.05 mm 
and 

(5" = 20 "C), pair = 1.85 x 10-5Pas 

the deceleration is found to  be about - 240 m/s2. When we look a t  a point a distance 
of 1 mm away from the nozzle, which is quite a large distance compared with the 
droplet dimensions, the velocity is lowered by an amount of 0.1 m/s.) 

(3) The time during which the velocity in the nozzle is positive is so short that no 
long jets will be formed. A long jet has a length of at least several times the diameter 
of the nozzle (Weber 1931). 
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FIQURE 9. A series of photographs showing successive stages of droplet formation. (Photographs 
reproduced by kind permission of the author from Doring (1982).) 
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At time t = t ,  the mean velocity and the velocity at r = 0, both defined at  the end 
of the nozzle, have changed sign from negative to positive. At that time we define 
a control volume just in front of the fluid-air interface. For t > t, a certain amount 
of fluid and kinetic energy will be transferred through the surface of the control 
volume. The volume V ( t )  that has passed the control-volume surface is 

rt 
F(t) = R R ~  Jt l  f l z  dt’, (33) 

where R, is the radius of the nozzle. 
A viscous fluid transports twice the amount of kinetic energy as an inviscid fluid 

does, provided that the mean velocity in both cases is identical. To incorporate this 
effect, the amount of kinetic energy transported through the surface of the control 
volume is approximated by 

Note that for the inviscid case and the purely viscous case the expression for T(t) 
is exact. In other cases it is an approximation. 

As the droplet formation basically consists of the conversion of kinetic energy into 
surface energy, the enlargement of the free surface must be calculated. In order to 
do this we assume that initially the shape of the fluid portion inside the control volume 
is a body of revolution, the generator of which is given by 

rt 
F(r ,  t )  = J,, vz(r,  t’) dt’ (35) 

F ( r , t )  is defined with respect to the surface of the control volume just before the 
nozzle, which is supposed to be flat a t  that place. In  fact (35) expresses that the 
emerging fluid is modelled as flowing in discrete concentric cylindrical shells, like an 
expanding telescope. Then the enlargement of the free surface can be found by 

For the inviscid case we have 

where h is defined as the ratio of twice the integral of the mean velocity over the 
time interval considered to the radius R, of the nozzle. For the purely viscous case 
at  any instant the velocity profile is a parabolic function of r .  On using this, evaluation 
of (36) yields 

1 O(t) = n R i [ ~ { ( l  1 +*A2)#- 1}-  1 

The kinetic energy T(t) is needed to enlarge the free surface. In the beginning the 
difference between T(t)  and aO(t ) ,  where u is the surface tension, is negative. Let us 
assume that at  a certain time t, the situation is reached for which 

T(t,) - a8(tz) = 27c b F ( r ,  t z )  r$(r, t,) dr JoRn (39) 
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At that instant the kinetic energy of the fluid portion inside the control volume is 
just equal to the difference of the kinetic energy transported through the surface of 
the control volume during t, < t < t, and the energy needed to  enlarge the free 
surface. Using the same reasoning as for the derivation of (34), we obtain 

(40) T ( t 2 ) - 4 t , )  = t P W 2 )  G z ( t 2 )  % ( h ) I r - o .  

On evaluating (40), i t  appears that this condition can be fulfilled only if 

which means that the velocity in the nozzle has gone through a maximum before the 
situation given by (40) is reached. Together with the fact that  the droplet velocity 
must be as high as several metres per second, this leads to  the conclusion that the 
value of h a t  the moment that a droplet can be formed is at least of order unity. Then 
expression (38) can be approximated by 

4h 1 1 
3 2h 6h2 

1 

I n  order to determine o(t) for intermediate cases we use 

The term in parentheses containing the integrals of the velocity a t  r = 0 and the mean 
velocity can be consjdered as a measure of the extent to which viscous effects will 
dominate. Equation (43) is an approximation, which is valid only for the limiting cases 
discussed. When the velocity decreases a t  t > t, the volume V(t,) will be the future 
droplet volume V,. Before the droplet is released for a short time, i t  is connected to 
the fluid in the nozzle by a stretching fluid thread (see figure 9). The creation of a 
free surface during stretching is simply taken into account by stating that the 
separation of the droplet from the fluid in the nozzle implies the generation of two 
surfaces equal to nR; ~~(t,)/v~(t,) l r X 0 .  One surface belongs to  the droplet, the other one 
to the fluid in the nozzle. Using this, and for the time being leaving out of account, 
the influence of viscosity during stretching, the droplet velocity is found to  be 

provided that the argument of the square root is positive, otherwise no droplet will 
be launched. I n  order to investigate the possibility of forming more droplets a t  t > t,, 
the analysis must be continued with 

(45) 

An estimate of the influence of the elongational viscosity, which is three times the 
dynamic viscosity (Petrie 1979), on the droplet velocity can be obtained as follows. 

O(t,) = V(t,) = 0, T(t2)  =-u~cR;  @ z ( t 2 )  ( t  > t,). 
%(t,) 17-0 

At time t = t, the tip of the fluid has reached the position 
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I n  order to simplify the calculation we assume the following. 

a cylinder, the radius Rj(t ,)  of which is given by 
( 1 )  At t = t ,  the shape of the fluid portion inside the control volume is replaced by 

nRf(t2) Lj( t2 )  = v d ,  (47) 

where Lj(t2)  = F(0, t,). During stretching, there is an increase in the length of the 
cylinder Lj(t )  and a decrease of the radius Rj(t), such that condition (47) still holds 
good, t, being replaced by t. 

(2) The total mass of the jet is concentrated in the tip of the jet. The velocity of 
the tip will be related to the droplet velocity. 

(3) The interface of the stretching jet and the fluid inside the nozzle moves with 
a velocity equal to Gz. 
For t > t ,  the deceleration of the tip of the jet is given by 

On using (47) and keeping in mind that' w d ( t ) - 6 z ( t )  equals the time rate of change 
of the length of the jet, we arrive a t  

An approximate solution for this differential equation reads 

To arrive a t  this approximate result it  is supposed that the fluid filament becomes 
fairly long before i t  breaks. I n  that case the initial length, which is equal to Lj(t2), 
is the determining parameter. 

Figure 10 shows the droplet velocity as a function of the pulse length and pulse 
height. One set of curves is calculated with the aid of (44), the second with the 
correction (50). It is clear that  the influence of the viscosity on the droplet velocity 
is very significant. Therefore in the following the correction term defined by (50) is 
used all the time. Figure 11 displays the droplet velocity as a function of the repeat 
rate fr. Above 3 kHz the influence of the poor damping of the fluid inside the pump 
is clearly depicted. Also shown is an experimental curve found with a pump very 
similar to the one used for the calculations. (The experimental curve was obtained 
a t  Philips' Research Laboratories in Hamburg by W. Ratke.) 

Figure 12 ( a )  gives an overview of the influence of the viscosity on the droplet size, 
droplet speed and the frequency up to which the deviations of droplet velocity are 
smaller than 0.2 m/s. This frequency is used as a measure for the damping. All the 
other system parameters are kept constant. A low viscosity results in a higher droplet 
velocity. The damping, however, is worse. Increasing the viscosity improves the 
damping but lowers the droplet velocity. Above a certain value no droplet will be 
launched any more. 

From figure 12 (a )  we can estimate the temperature sensitivity of the pump system. 
The dependence of the viscosity on temperature can be expressed as 

p ( T )  = p(T,) e-b(T-To), (51) 

provided that T is in the neighbourhood of T, (Winter 1977). The value of the 
coefficient b is almost the same for different fluids. Consequently, for a certain 
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FIGURE 10. The droplet velocity as a function of the pulse length and pulse height. The droplets 
are generated with the pump of figure 2 without damper. For all the cases t,  = 2 ps and!, = 1000 Hz. 
The dashed curves refer to results obtained with (44). Curves ( b )  were calculated with the aid of 
(44) and (50). (System of figure 2 without damper.) 
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FIGURE 12. (a )  The droplet velocity, droplet size and the frequency above which the deviations 
of the droplet velocity becomes larger than 0.2 m/s, displayed as functions of the viscosity. (System 
of figure 2 without damper, t, = 18 ps, t, = 2 ~ s ,  fr = 1000 Hz, w,, = 1.2 x lop8 m.) (b )  The droplet 
size, amplitude w,, and the frequency above which the deviations of the droplet velocity becomes 
larger than 0.2 m/s for the case of constant droplet velocity displayed as functions of the viscosity. 
(System of figure 2 without damper, t,  = 18 ps, t,  = 2 ps,fr = 1000 Hz, z ) ~  = 2.3 m/s.) 

temperature step the change of the viscosity is proportional to p(T,). As the droplet 
velocity is nearly a linear function of the viscosity we may conclude that the droplet 
velocity of a highly viscous fluid is more sensitive to  temperature than a low-viscosity 
fluid. 

Figure 12 ( b )  gives an overview of the influence of the viscosity on the droplet size, 
the pulse height wo and the damping for the case of constant droplet velocity. We 
see that in order to obtain a better damping the fluid must be more viscous, which 
requires a higher voltage necessary to activate the pump. However, improved 
damping can only be achieved a t  the expense of increased temperature sensitivity. 
Thus the choice of the viscosity is necessarily a compromise. 
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